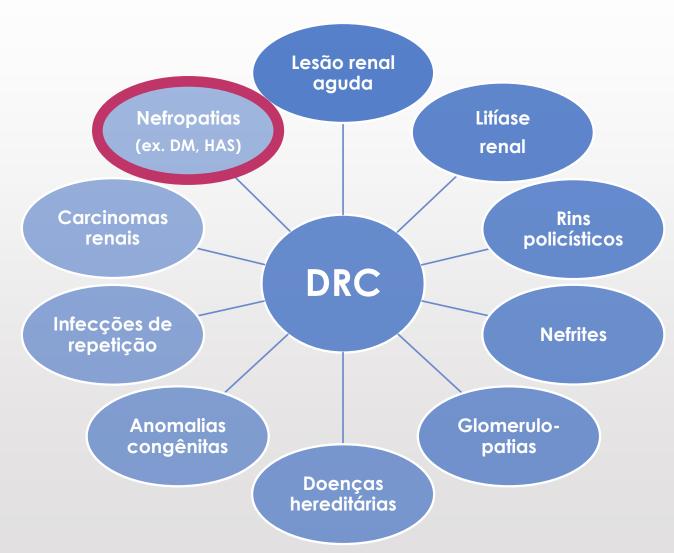


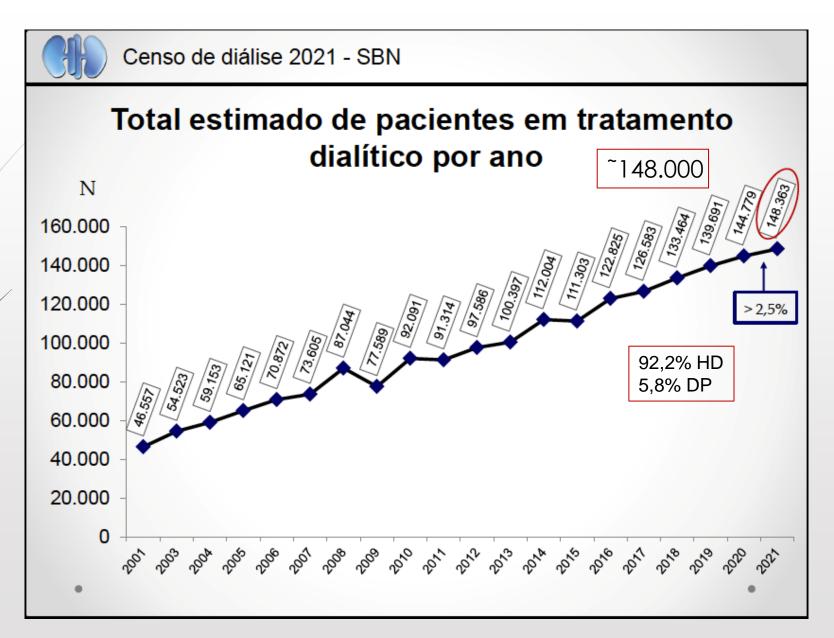
CONGRESSO NORTE E NORDESTE DE NUTRIÇÃO CLÍNICA E ESPORTIVA

19, 20 e 21 de julho de 2023

Holiday Inn Hotel & Convention | Natal - RN

Dieta "plant based" é possível empregar na doença renal crônica?


Lilian Cuppari


Doença Renal Crônica

Conjunto heterogêneo de doenças

Marinho, AWB et al. Cad. Saúde Colet.,2017

Doença Renal Crônica: diagnóstico e estadiamento

Diagnóstico (KDOQI, 2012)

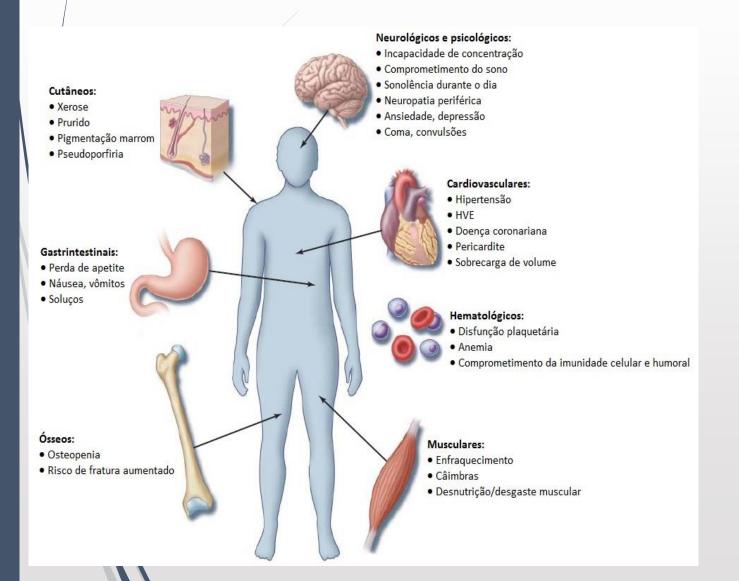
Alterações estruturais*

Albuminúria (>30mg/gCr)

Exames de imagem

Alterações funcionais*

■ Taxa de filtração glomerular (<60mL/min/1,73m²)</p>


*Por mais de 3 meses

Estágio	Característica	TFG
1	Lesão renal com TFG normal ou aumentada	≥ 90
7	Lesão renal com redução leve da TFG	60 a 89
ivo	Lesão renal com redução moderada da TFG	45 a 59
3b	Lesão renal com redução moderada da TFG	30 a 44
4	Redução grave da TFG	15 a 29
5	Falência renal ou fase dialítica	< 15

KDIGO, 2012

Complicações da Doença Renal Crônica

Alterações do sistema imune

Acidose metabólica

Doenças ósseas

Distúrbios metabólicos e hormonais

Hipertensão arterial

Doenças cardiovasculares

Desnutrição/obesidade

Distúrbios hidroeletrolíticos

Bastos, MG et al. J Bras Nefrol, 2004

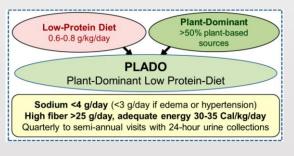
Controle ou ajuste de vários nutrientes

Dieta "Plant-Based"

Definição

É um tipo de padrão alimentar que enfatiza o consumo de alimentos de origem vegetal e pode incluir ou não quantidades pequenas ou moderadas de carnes, ovos e lácteos.

DASH


Vegetariano

Vegano

Flexitariano

Mediterrâneo

PLADO

Carrero JJ, Nature Rev.Nephrol, 2020

Kalantar-Zadeh K et al, Nutrients, 2020

Características das Dietas "Plant-Based"

	Vegetariana	Vegana	DASH	Mediterranea	Dieta saudável	PLADO
Frutas	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$
Hortaliças	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$
Leguminosas	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$
Oleaginosas	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$
Cerais integrais	<u> </u>	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$	<u> </u>	$\uparrow\uparrow\uparrow$	$\uparrow\uparrow\uparrow$
Carne vermelha				As vezes	As vezes	Ţ
Frango /			\downarrow	↓	\downarrow	↓
Peixe /			\downarrow	\downarrow	\	\downarrow
Ovos	\downarrow		\downarrow	↓	\downarrow	\downarrow
Lá¢teos magros	\downarrow	\downarrow	\downarrow	↓	\downarrow	\downarrow
Azeite oliva			<u> </u>			
Vinho				↑		
Vitraprocessados						

Dieta "plant-based" na DRC: há benefícios? há riscos?

Potenciais benefícios

Progressão da DRC

Manejo das complicações

Potenciais riscos

- √ Hiperpotassemia
- ✓ Inadequação proteica

Healthy Dietary Patterns and Incidence of CKD A Meta-Analysis of Cohort Studies

Katrina E. Bach, ¹ Jaimon T. Kelly , ¹ Suetonia C. Palmer, ² Saman Khalesi, ³ Giovanni F. M. Strippoli, ^{4,5,6} and Katrina L. Campbell ¹

How does diet affect kidney outcomes?

Conclusions A healthy dietary pattern may prevent chronic kidney disease and albuminuria.

Katrina E. Bach, Jaimon T. Kelly, Suetonia C. Palmer, et al. Healthy dietary patterns and incidence of chronic kidney disease: A meta-analysis of cohort studies. CJASN doi: https://doi.org/10.2215/CJN.00530119. Visual Abstract by Michelle Lim, MBChB

Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies

Risco de óbito pacientes com DRC

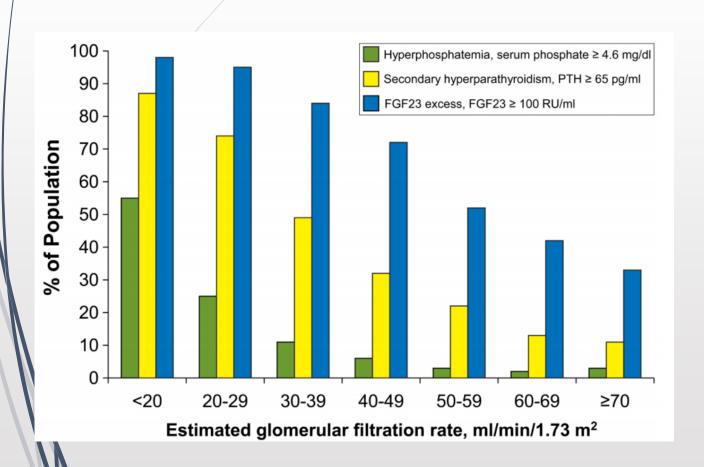
No. of No. of Relative risk (95% CI) patients events 3006 437 506 168 1065 633 3093 610 2288 1319 3972 816 13,930 3983 0.2 2 Higher risk Lower risk with healthy with healthy dietary pattern dietary pattern Frutas, hortaliças, peixe, grãos integrais, cereais e leguminosas

Menor risco de óbito

Carne, sal e açúcar refinado

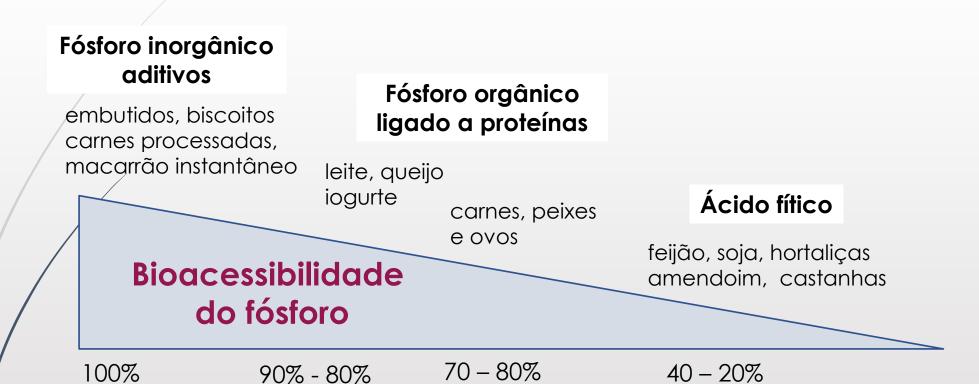
Padrão dietético "plant-based" na DRC

Risco de DRC
Declínio da TFG
Albuminúria
Risco de óbito

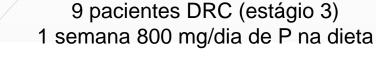

Complicações

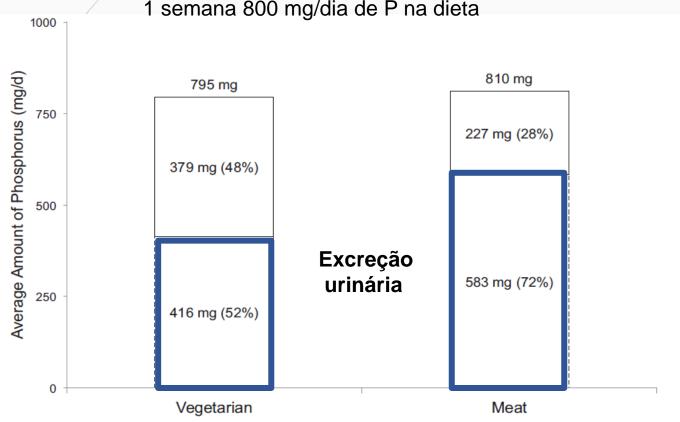
Hiperfosfatemia

Acidose metabólica

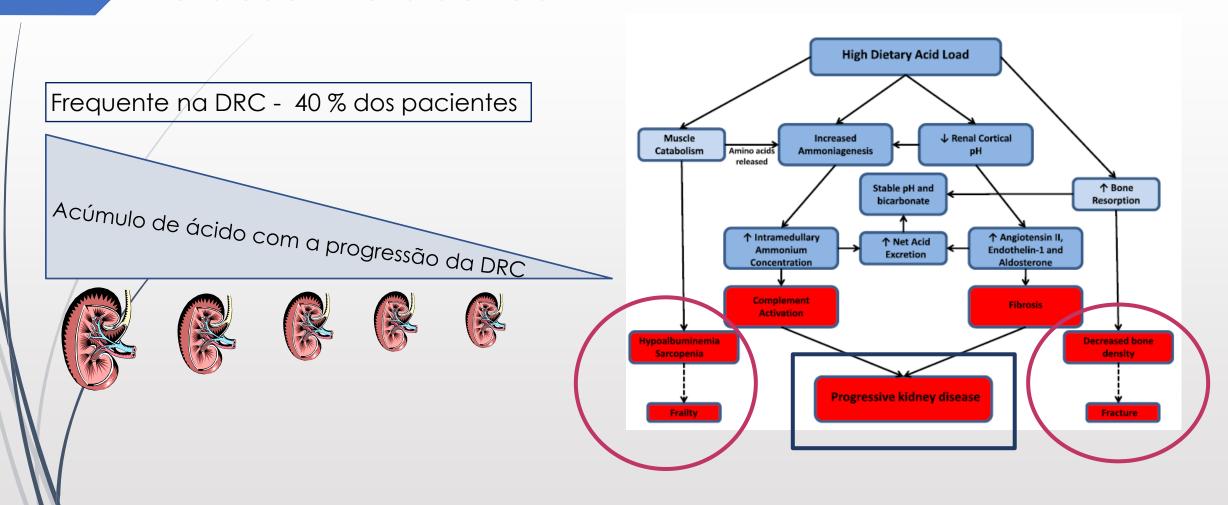

Toxicidade urêmica

Hiperfosfatemia

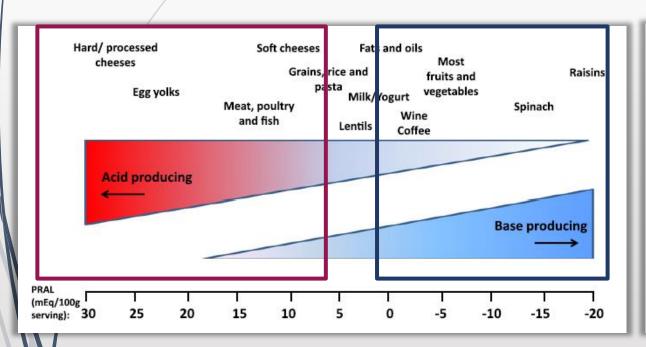

O aumento da fosfatemia
exerce papel fundamental
no desenvolvimento da
DMO-DRC e se associa
com calcificação vascular,
doença cardio vascular e óbito.

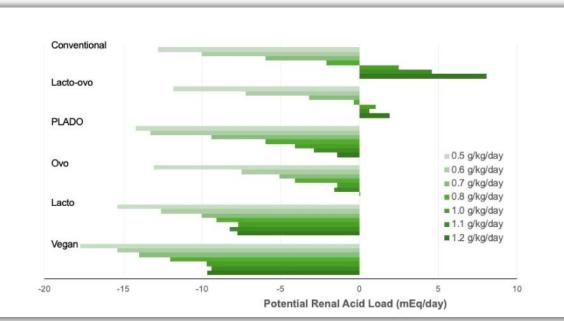

Fontes alimentares de fósforo

Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic **Kidney Disease**



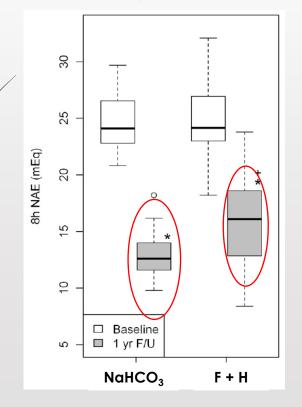
Esse resultado indica que o fósforo proveniente de alimentos de origem vegetal é menos absorvido (fitato)

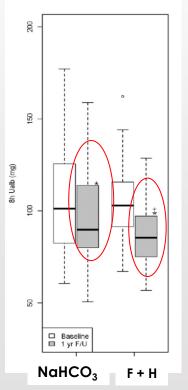

Acidose metabólica


Scialla JJ & Anderson CAM, Adv Chronic Kidney Dis, 2013

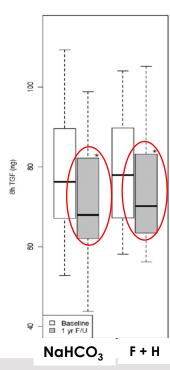
Carga ácida

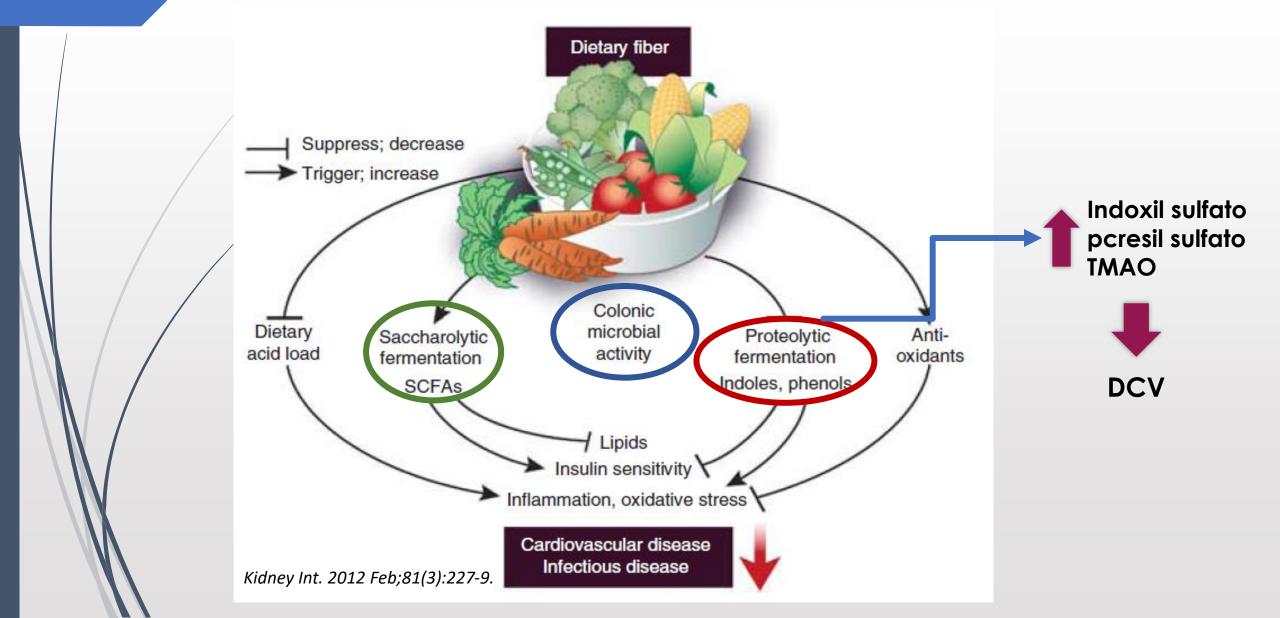
Potencial renal de carga ácida (PRAL)de acordo com o tipo de alimento

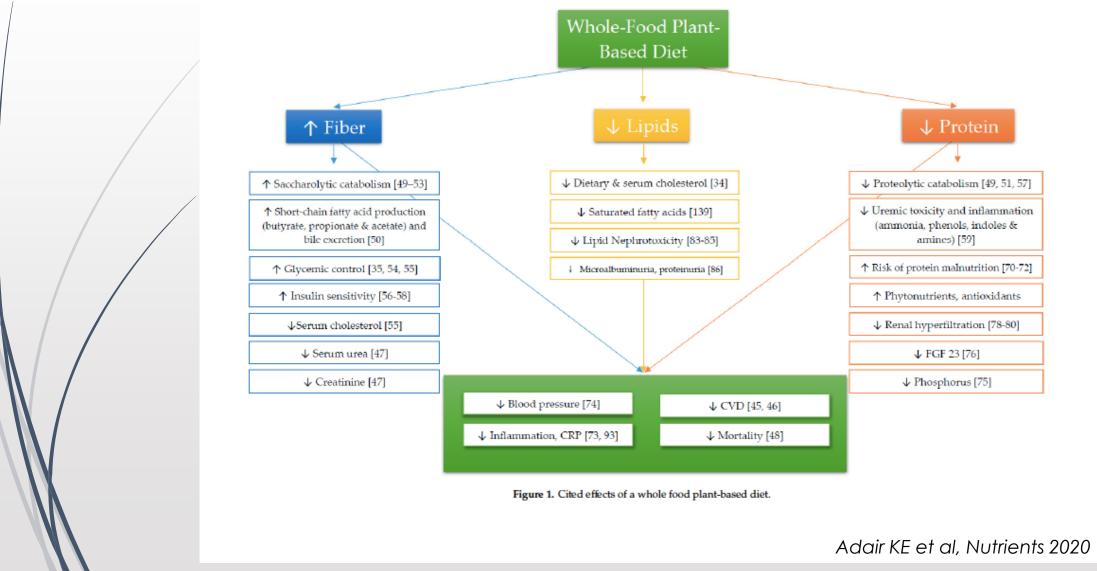

Potencial renal de carga ácida (PRAL)de acordo com o tipo da dieta e a quantidade de proteína


Frutas e hortaliças acidose e dano renal

Pacientes hipertensos DRC estágio 4 e acidose metabólica 1 ano de intervenção com $NaHCO_3$ ou frutas + hortaliças


Excreção de ácidos


Albumina urinária


TGF-ß urinário

Toxicidade urêmica e intestino

Inúmeros potenciais benefícios

Dieta "plant-based" na DRC: há benefícios? há riscos?

Potenciais benefícios

Progressão da DRC

Manejo das complicações

Potenciais riscos

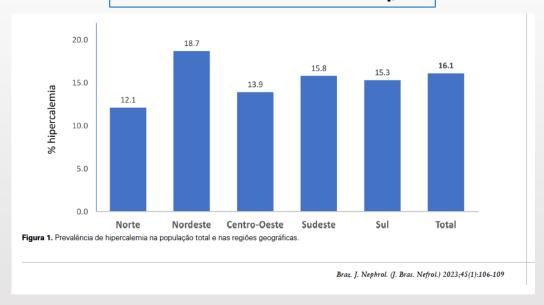
- √ Hiperpotassemia
- ✓ Inadequação proteica

Potenciais riscos - hiperpotassemia

Prevalência de hiperpotassemia pacientes em terapia dialítica (DOPPS)

$$K > 5.0 \text{ mEq/L} = 31\%$$

K > 6.0 mEq/L = 8%


Karaboyas et al. Am J Kidney Dis, 2017

Complicações neuromusculares

Censo Sociedade Brasileira de Nefrologia Diálise

Potássio sérico > 6,0 mEq/L

Cãibras, parestesia Arritmia e parada cardíaca

Causas de hiperpotassemia na DRC

Principais causas de hiperpotassemia na DRC

Redução da função renal

Hipercatabolismo tecidual

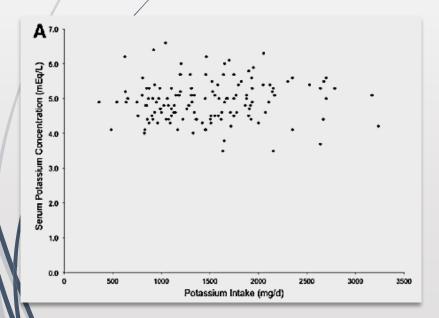
Medicamentos: betabloqueadores; diuréticos poupadores de K.

Deficiência de insulina

Redução na secreção de aldosterona: diabetes, bloqueadores do SRAA

Acidose metabólica

Constipação

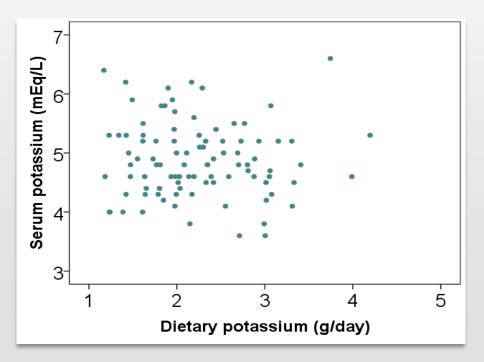

Dieta

Papel da dieta

Nutrient non-equivalence: Does restricting high-potassium plant foods help to prevent hyperkalemia in hemodialysis patients?

DE St-Jules, RD, PhD1, DS Goldfarb, MD2, and MA Sevick, ScD, RN1

Hemodiálise



Journal of Renal Nutrition, 2016

Does dietary potassium intake associate with hyperkalemia in patients with chronic kidney disease?

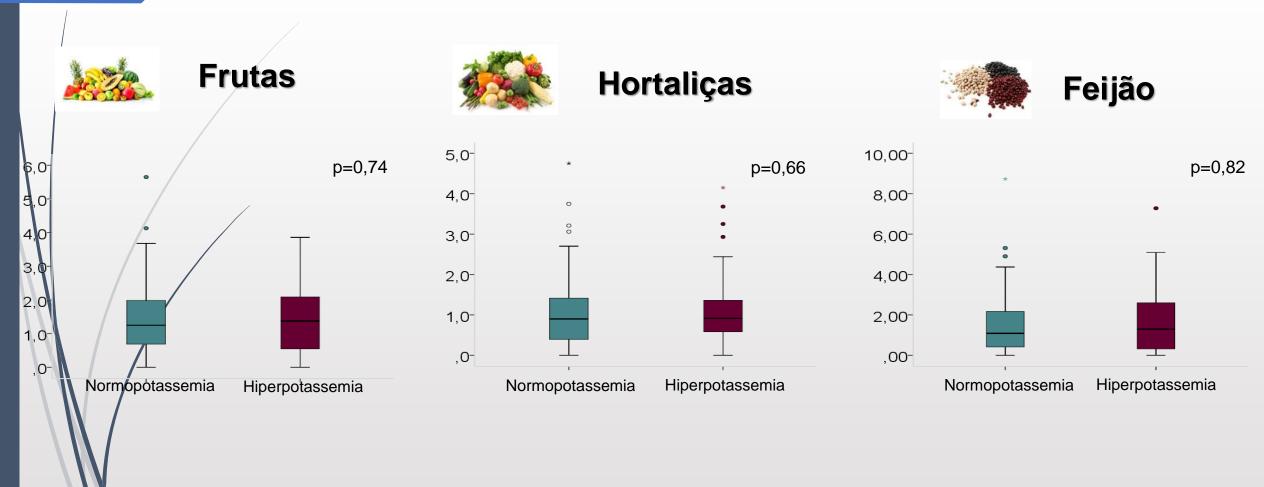
Christiane I. Ramos¹, Ailema González-Ortiz^{2,3}, Angeles Espinosa-Cuevas², Carla M. Avesani^{3,4}, Juan Jesus Carrero³, and Lilian Cuppari^{1,5}

DRC 4 e 5

Nephol. Dial. Transpl, 2020

O papel da dieta

Ingestão alimentar de acordo com os grupos de potássio sérico.


96 Pacientes fase não dialítica

117 Pacientes em Hemodiálise

Parâmetros	Normopotassemia n=60	Hiperpotassemia n=36	P	Parâmetros	Normopotassemia n=58	Hiperpotassemia n=59	P
Energia, kcal/dia	1682 (1463 - 1964)	1600 (1371 - 1998)	0,69	Energia, kcal/dia	1580 (1423 - 1824)	1582 (1402 - 1770)	0,68
Proteína, g/dia	61,5 (55.3 – 82,8)	59,5 (48,0 – 75,7)	0,33	Proteína, g/dia	66,8 (57,6 – 78,3)	64,2 (53,4 – 77,6)	0,62
Fibra g/dia	13,8 (11,5 – 18,9)	13,2 (8,4 – 18,7)	0,23	Fibra g/dia	15,0 (11,6 – 20,0)	14,0 (9,4 – 18,0)	0,23
Potássio, g/dia	2,1 (1,8 – 2,8)	2,2 (1,7 – 2,6)	0,59	Potássio, g/dia	1,7 (1,5 – 2,0)	1,6 (1,3 – 2,0)	0,54

O papel na dieta

O papel na dieta

Does dietary potassium affect outcomes in patients treated with hemodialysis?

The baseline potassium intake was 3.5g/ day [IQR 2.5 - 5.0]

Conclusão: elevada ingestão de potássio não está associada com hiperpotassemia ou óbito de pacientes em hemodiálise.

A maior ingestão de frutas e hortaliças se associou com menor risco de óbito por todas as causas.

Conclusions Higher dietary intake of potassium is not associated with hyperkalemia or death in patients treated with hemodialysis. Amelie Bernier-Jean, Germaine Wong, Valeria Saglimbene, et al. *Dietary Potassium Intake and All-Cause Mortality in Adults Treated with Hemodialysis*. CJASN doi: 10.2215/CJN.08360621. Visual Abstract by Michelle Lim, MBChB, MRCP

Quais seriam as razões para a falta de associação?

- Outras condições ou fatores que causam hiperpotassemia e que se sobrepõem ao potássio da dieta ?
- Absorção do potássio da dieta dependendo do alimento?
- Composição da dieta?
- Imprecisão na avaliação da ingestão de potássio?
- Momento em que a dosagem de potássio sérico é realizada?

Fatores associados com a hiperpotassemia

96 Pacientes fase não dialítica

Variáveis	Odds Ratio		valo de ça (95%) superior	P	
I.Potássio (g/1000 kcal/dia)	0,58	0,10	1,46	0,54	
TFGe (mL/min)	0,97	0,92	1,03	0,35	
Diabetes	3,55	1,07	11,7	0,04	
Uso de inibidores SRAA	1,29	0,39	4,29	0,67	_
Uso de NaHCO3	0,34	0,09	1,24	0,10	
S. HCO3 ⁻ <22mEq/L	4,48	1,41	14,3	0,01	

TFGe – taxa de filtração glomerular estimada; SRAA – sistema renina-angiotensina aldosterona

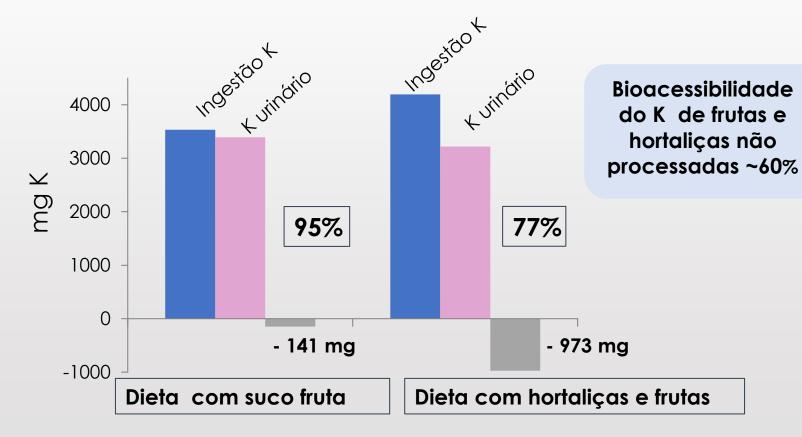
117 Pacientes em Hemodiálise

Variáveis	Odds		valo de ça (95%)	P
	Ratio	inferior	superior	
I.Potássio (g/1000 kcal/dia)	1,17	0,30	4,60	0,83
Tempo em HD (meses)	0,97	0,89	1,07	0,64
Diabetes	4,22	1,31	13,6	0,02
IMC, kg/m2	1,04	0,91	1,18	0,57
Creat.sérica (mg/dL)	1,50	1,24	1,81	<0,01
S. HCO3 ⁻ <22mEq/L	0,61	0,21	1,74	0,35

An investigation into the bioaccessibility of potassium in unprocessed fruits and vegetables

Alta bioacessibilidade

Carnes e laticínios + suco fruta sem hortaliças e frutas


Baixa bioacessibilidade

Pouca carne e laticínios **com** hortaliças e frutas **integrais**

Estudo cruzado 11 voluntários saudáveis 10 dias

Articl

Randomized Trial on the Effects of Dietary Potassium on Blood Pressure and Serum Potassium Levels in Adults with Chronic Kidney Disease

> Estudo cruzado, 4 semanas em cada dieta Pacientes CKD-3 (n=28); K sérico: 3,5 a 4,9mEq/L

High K+ diet: 100 mmol/dia (3900 mg/dia)

Low K+ diet: 40 mmol/dia (1000 mg/dia)

	N	Baseline	Lower-K	Higher-K	Difference (95% CI))	* <i>p</i> -Value
			A 11			
Urine Na, 1 > Mon	itorar o	potássio s				0 <0.001 00) 0.27 0.003 0.46
Urine Vol, L/day	25	2.0 (1.0)	1.7 (0.5)	1.7 (0.7)	0.04 (-0.1, 0.2)	0.66

^{*} Values on higher minus values on lower. ** Primary outcome of trial.

	1 28 3 10.7			Week 2			Week 4			
	Total N		%	Total N	N with Hyperkalemia	U/a		N with Hyperkalemia		OR (95% CI) * <i>p</i>
High Potassium Low Potassium		3 0	10.7 0.0	27 26	2 1	7.4 3.8	26 26	0 1	0.0 3.8	2.50 (1.04, 6.00) 0.04

Fontes alimentares de potássio

1 bife 202 mg 1 filé de frango 387 mg

1 banana nanica 263 mg 1 pera 186 mg

50 g amendoim 496 mg

1 copo de leite 281 mg

1 concha de feijão 380 mg

1 pão francês 70 mg

Fonte: Tabela Brasileira de Composição de Alimentos (TACO, 2011)

Recomendação de ingestão de potássio

KDOQI CLINICAL PRACTICE GUIDELINE FOR NUTRITION IN CKD: 2020 UPDATE

T. Alp Ikizler, Jerrilynn D. Burrowes, Laura D. Byham-Gray, Katrina L. Campbell, Juan-Jesus Carrero, Winnie Chan, Denis Fouque, Allon N. Friedman, Sana Ghaddar, D. Jordi Goldstein-Fuchs, George A. Kaysen, Joel D. Kopple, Daniel Teta, Angela Yee-Moon Wang, and Lilian Cuppari

AJKD Vol 76 | Iss 3 | Suppl 1 | September 2020

 Em adultos nos estágios 3-5D da DRC pós-tx, recomenda-se ajustar a ingestão de potássio para manter o níveis de potássio sérico dentro da faixa de normalidade (OPINIÃO).

Risco-Inadequação proteica?

Adequacy of Plant-Based Proteins in Chronic Kidney Disease

Shivam Joshi, MD,* Sanjeev Shah, MD,* and Kamyar Kalantar-Zadeh, MD†

Quantidade de proteínas

Atende as recomendações e pode ser ajustada Planejamento dietético para pacientes com maior necessidade

Qualidade das proteínas

Adequada desde que a alimentação seja variada e balanceada Se for vegana - leguminosas + cereais

Outras vantagens

Melhora controle da fosfatemia, hipertensão arterial, acidose metabólica, resistência à insulina, toxicidade urêmica, inflamação, saúde intestinal

Inadequação proteica?

Article

Nutritional Adequacy of Animal-Based and Plant-Based Asian Diets for Chronic Kidney Disease Patients: A Modeling Study

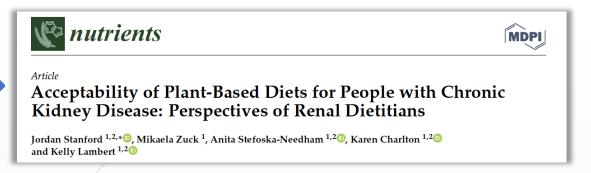
Ban-Hock Khor ¹, Dina A. Tallman ^{2,3}, Tilakavati Karupaiah ⁴, Pramod Khosla ², Maria Chan ⁵ and Joel D. Kopple ^{6,7,*}

Dieta hipoproteica convencional (50% AVB) e "plant-based" e adequação AEE (RDA)

Table 2. Macronutrients, essential amino acid, and long-chain n-3 polyunsaturated fatty acid content of conventional, plant-based, and vegetarian low protein diets.

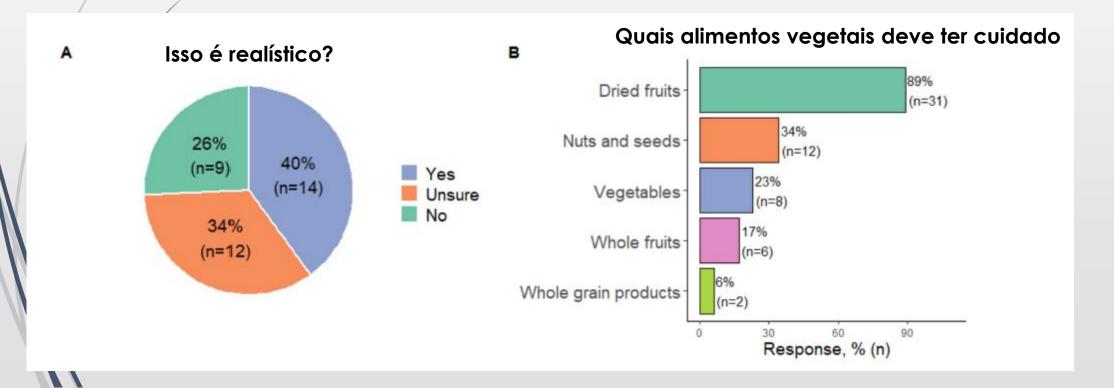
NT	D (+		0.5	g/kg/Day or 35 g	/Day *			0.6 g/kg/Day or 42 g/Day *						
Nutrients	Reference †	Conventional	Lacto-ovo	PLADO	Ovo	Lacto	Vegan	Conventional	Lacto-ovo	PLADO	Ovo	Lacto	Vega	
Energy (kcal)		2016	2071	2047	2078	2090	2098	2059	2145	2088	2100	2140	2138	
Carbohydrate (g)		300	301	308	311	312	324	300	302	315	298	306	325	
Dietary fiber (g)	29 a	19	19	21	23	23	27	19	19	23	23	24	32	
Total protein (g)		36	36	36	36	36	36	43	42	42	42	43	42	
Animal protein (g)		15	13	11	6	8	0	22	19	12	13	11	0	
Plant protein (g)		21	23	25	30	28	36	21	23	30	29	32	42	
Essential AA														
Tryptophan (mg)	350 a	409	441	409	417	442	408	487	524	488	500	540	47	
Threonine (mg)	1400 a	1377	1353	1359	1326	1323	1293	1681	1631	1611	1604	1610	152	
Isoleucine (mg)	1330 a	1608	1653	1586	1579	1613	1531	1927	1989	1879	1915	1948	180	
Leucine (mg)	2940 a	2678	2866	2663	2667	2807	2589	3240	3410	3136	3211	3396	303	
Lysine (mg)	2660 a	2226	2056	2147	1934	2006	1906	2861	2513	2601	2391	2544	232	
Methionine + Cysteine (mg)	1330 a	1333	1384	1279	1257	1213	1095	1612	1710	1462	1583	1411	124	
Phenylalanine + Tyrosine (mg)	2310 a	2715	3022	2738	2867	2953	2779	3218	3612	3234	3457	3561	325	
Valine (mg)	1680 a	1895	2075	1872	1962	1979	1833	2251	2505	2171	2391	2346	212	
Histidine (mg)	980 a	930	875	908	857	895	881	1134	1029	1089	1011	1108	105	
Total fat (g)		77	83	77	80	80	78	78	88	<i>7</i> 7	85	86	79	
EPA+DHA (mg)	250 b	263	21	260	21	0	0	537	42	279	42	0	0	
N	n (+		0.7	g/kg/Day or 49 g	/Day *				0.8 g	/kg/Day or 56 g	/Day *			
Nutrients	Reference †	Conventional	Lacto-ovo	PLADO	Ovo	Lacto	Vegan	Conventional	Lacto-ovo	PLADO	Ovo	Lacto	Veg	
Energy (kcal)		2077	2170	2180	2146	2185	2181	2083	2195	2143	2189	2229	222	
Carbohydrate (g)		295	294	318	299	309	325	282	287	299	300	311	32	
Dietary fiber (g)	29 a	19	20	27	28	28	36	19	25	30	32	31	4	
Total protein (g)		50	50	50	49	50	49	56	56	57	55	55	58	
Animal protein (g)		29	25	15	13	14	0	35	25	17	13	14	0	
Plant protein (g) Essential AA		21	25	35	36	36	49	21	31	40	42	41	5	
Tryptophan (mg)	350 a	567	623	572	574	606	545	641	689	638	649	671	61	
Threonine (mg)	1400 a	1970	1919	1923	1863	1846	1765	2243	2160	2164	2108	2056	20	
Isoleucine (mg)	1330 a	2288	2374	2250	2223	2276	2090	2582	2659	2526	2511	2524	23	
Leucine (mg)	2940 a	3753	4119	3718	3715	3970	3501	4239	4590	4182	4181	4368	40	
Lysine (mg)	2660 a	3443	3112	3180	2862	3036	2756	3989	3550	3652	3291	3399	32	
Methionine + Cysteine (mg)	1330 a	1889	2008	1714	1753	1664	1407	2132	2166	1894	1916	1806	15	
Phenylalanine + Tyrosine (mg)	2310 a	3721	4315	3849	3999	4143	3761	4175	4821	4311	4502	4574	43	
Valine (mg)	1680 a	2590	2948	2530	2718	2719	2421	2913	3252	2839	3018	2972	27	
Valine (mg) Histidine (mg)	980 a	2590 1346	2948 1245	1318	1206	1288	1233	1567	3252 1425	1493	1385	1441	14:	
Total fat (g)	980 "	79	91	82	87	87	81	83	93	83	89	89	8	
EPA+DHA (mg)	250 b	543	42	282	87 42	0	0	603	93 42	400	42	0	0	

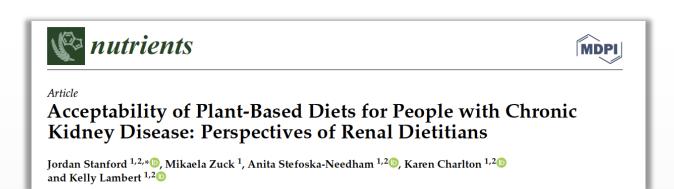
Inadequação proteica?


Article

Nutritional Adequacy of Animal-Based and Plant-Based Asian Diets for Chronic Kidney Disease Patients: A Modeling Study

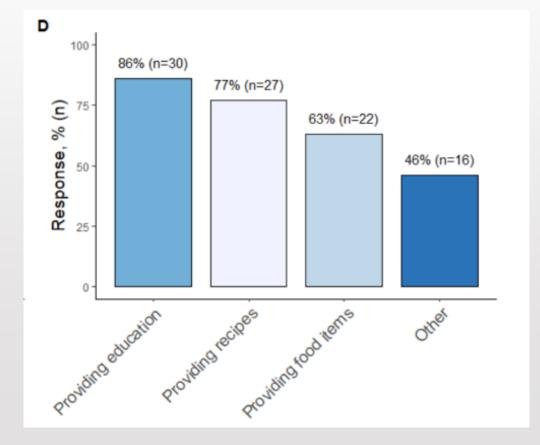
Ban-Hock Khor ¹, Dina A. Tallman ^{2,3}, Tilakavati Karupaiah ⁴, Pramod Khosla ², Maria Chan ⁵ and Joel D. Kopple ^{6,7},*

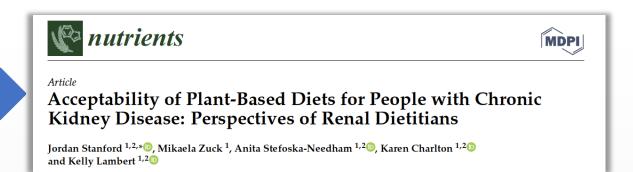

Table 3. Macronutrients, essential amino acids, and long-chain n-3 polyunsaturated fatty acids of conventional, plant-based, and vegetarian moderately high protein diets.


			1.0 g/kg	g/Day or 70	g/Day*				1.1 g/kg/Day or 77 g/Day *						1.2 g/kg/Day or 84 g/Day *				
Nutrients	Reference †	Conventional	Lacto- ovo	PLADO	Ovo	Lacto	Vegan	Conventional	Lacto- ovo	PLADO	Ovo	Lacto	Vegan	Conventional	Lacto- ovo	PLADO	Ovo	Lacto	Vegan
ca Limit	acões:	a mod	elac	ıem t	eve	COL	mo k	oase un	n car	dápi	o ic	deal	e p	ortanto	teói	ico:			110
Ca	aşoos.															,			66
Die		os car	dáni	ios fo	ram	ı ba	sead	dos na c	cultu	ra ali	ime	ntai	' asi	ática:					58
Tota													GOI	anca,					34
Ani		dados	de	lahel	as c	de c	omr	osição	de	ılime	nto	6.							0
Plar		addos	uc i	MDCI	us c		OIIIP	osição	uc c			3,							2.4
Essential AA								_		-		to to					-		51
Tryptophan	350 a	801	865	792	800	818	790	874	976	896	891	925	869	959	1048	963	962	1012	936
(mg)																			
Threonine (mg)	1400 a	2823	2687	2660	2599	2547	2562	3095	3001	3020	2886	2864	2837	3417	3232	3279	3128	3140	3067
Isoleucine (mg)	1330 a	3228	3314	3113	3073	3137	3011	3588	3714	3529	3443	3512	3333	3960	3983	3818	3726	3839	3609
Leucine (mg)	2940 a	5325	5711	5085	5127	5449	5024	5864	6339	5776	5705	6041	5551	6447	6786	6267	6166	6565	6002
Lysine (mg)	2660 a	5062	4520	4461	4053	4385	4043	5636	5023	5140	4549	4891	4538	6302	5433	5644	4974	5370	4962
Methionine +	1330 a	2626	2560	2244	2204	2166	1905	2933	2849	2497	2476	2374	2085	3237	3005	2698	2645	2557	2228
Cysteine (mg)	1550	2020	2.500	2244	2204	2100	1505	2755	2047	2477	24/0	2.07 4	2000	3237	5005	2070	2040	2007	2220
Phenylalanine +	2310 a	5279	5983	5268	5552	5672	5441	5796	6671	5969	6182	6316	6006	6340	7154	6463	6687	6882	6483
Tyrosine (mg)																			
Valine (mg)	1680 a	3631	3943	3468	3648	3645	3408	4022	4400	3930	4065	4040	3753	4400	4684	4241	4346	4379	4061
Histidine (mg)	980 a	1999	1838	1833	1731	1850	1801	2188	2046	2095	1930	2065	2004	2415	2220	2280	2108	2267	2179
Total fat (g)		81	89	77	92	81	81	73	87	75	83	80	78	67	82	73	79	75	74
EPA+DHA (mg)	250 b	743	42	406	42	0	0	805	42	523	42	0	0	906	42	561	42	0	0

Questionário online e entrevista com 45 nutricionistas da Austrália que atuam em DRC

Objetivos: - explorar as perspectivas dos nutricionistas em relação dieta "plant-based" -analisar a aceitação pelos nutricionistas de uma prescrição hipotética de consumo pelos pacientes de **30 alimentos** de origem vegetal **por semana**

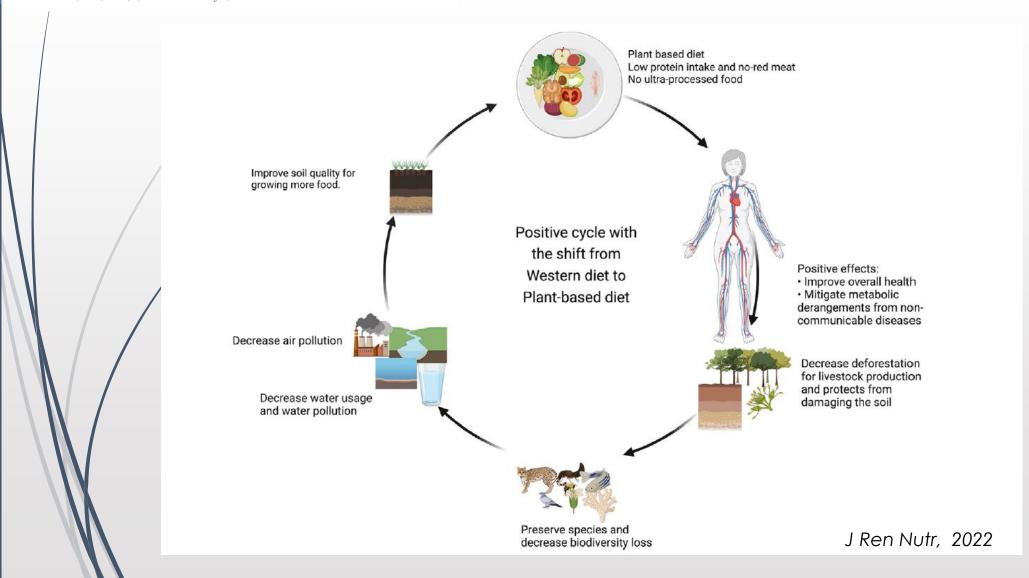




Quais os desafios para implementar?

C 100 80% (n=28) 71% (n=25) Response, % (n) 66% (n=23) 60% (n=21) 49% (n=17) 50

Quais os facilitadores necessários para implementar?



Resultado de algumas falas dos nutricionistas

- ➤ Todos concordaram que esse tipo de dieta traz benefícios / principalmente nos fatores de risco para progressão e distúrbios metabólicos da DRC.
- > Enfatizaram a importância da mudança de paradigma em relação a abordagem tradicional focada em restrição de nutrientes.
- Indicaram a limitação de tempo para dedicar ao pacientes (nº restrito de profissionais)
- > Dificuldade em relação às diferentes filosofias sobre dieta na DRC dos outros membros da equipe multiprofissional.

Planetary Health, Nutrition, and Chronic Kidney Disease: Connecting the Dots for a Sustainable Future

Carla Maria Avesani, PhD,* Ludmila F. M. F. Cardozo, PhD,† Angela Yee-Moon Wang, MD, PhD,‡ Paul G. Shiels, MD, PhD,* Kelly Lambert, PhD, Bengt Lindholm, MD, PhD,* Peter Stenvinkel, MD, PhD,*, 1 and Denise Mafra, PhD** 1

Muito obrigada licuppari@gmail.com @licuppari